Microbiological Transformation of Manoyl Oxide Derivatives by *Mucor* plumbeus

Braulio M. Fraga,^{*,†} Pedro González,[‡] Ricardo Guillermo,[‡] and Melchor G. Hernández[†]

Instituto de Productos Naturales y Agrobiología, CSIC, P.O. Box 195, La Laguna, 38206-Tenerife, Canary Islands, Spain, and Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, Tenerife, Spain

Received April 7, 1998

Biotransformations of jhanol (18-hydroxymanoyl oxide) (2), jhanidiol (1β , 18-dihydroxymanoyl oxide) (3), and 1-oxo-jhanol (1-oxo-18-hydroxymanoyl oxide) (4) by the fungus Mucor plumbeus have been studied. In the incubation of **2** there exists a preference for hydroxylation at C-2(α) (8) and C-6(β) (9–11) and, to a lesser degree, at C-1(α) (7), C-11(α) (6), and C-11(β) (5 and 10). In the second substrate (3), the presence of a 1β -hydroxyl group inhibits 6β - or 11-hydroxylation. Epoxidation of the vinyl group constitutes the main reaction, with the positions 2α (14) and 3β (15) being hydroxylated. In the incubation of 4, there was a preference for 6β -hydroxylation (21) or epoxidation of the vinyl group (22). Other hydroxylations observed were at the 2α (19), 2β (20), 3α (23), 3β (24), and 11β (18) positions.

In a continuation of studies of the microbiological transformation of diterpenoids with fungi we have examined the biotransformation of three manoyl oxide derivatives with Mucor plumbeus (Mucoraceae), a fungus with a low substrate specificity. The purpose was to obtain substances with functionality similar to that of forskolin¹ (1). In previous work we studied incubation of the same compounds with Gibberella fujikuroi,² a fungus that, despite possessing high substrate specificity, produces an enantiomeric derivative of manoyl oxide. The fungus M. *plumbeus* has been used previously for biotransformations, for example, with sesquiterpenes possessing the cedrane³ and aromadendrane⁴ skeletons and with diterpenes of the labdane type.^{5–7} In the latter case, the main compounds isolated were hydroxylated at ring A.

Results and Discussion

The substrates used were jhanol (2), jhanidiol (3), and 1-oxo-jhanol (4). The first two diterpenes had been isolated from *Eupatorium jhanii*,⁸ a plant that grows in the Andean region of Venezuela, and the last was a synthetic sample obtained chemically from 3 or microbiologically from 2.² The incubation of 2 led to the isolation of compounds 5-11. The substances 5-7 had been obtained in the incubation of this compound with *G. fujikuroi*² and were identified by direct comparison.

The structure of 2α , 18-dihydroxymanoyl oxide (8) was given to one of the metabolites, on the basis of the following considerations: HRMS showed a peak at m/z 307.2273, formed by the loss of a methyl group from the molecular ion. Thus, the molecular formula of this product was C₂₀H₃₄O₃, indicating that a new oxygen had been introduced into the molecule of 2. This oxygen function was a secondary alcohol, because in the ¹H NMR spectrum a proton geminal to a hydroxyl group appeared as a triplet of triplets at δ 3.99. The multiplicity of this resonance can only be explained by a 2β -hydrogen, with two adjacent methylene groups, in which the triplet of triplets arises from the equivalent coupling observed with $H-1(\alpha)$ and H-3(α) (*J* = 11.2 Hz) and with H-1(β) and H-3(β) (*J* = 4.5

† Instituto de Productos Naturales.

н CH2OR2 2 $R_1 = H_2$ $R_2 = H$ $R_1 = \beta - OH, H$ $R_2 = H$ 3 3a $R_1 = \beta$ -OAc, H $R_2 = Ac$ $R_1 = O R_2 = H$ 25 R₁ = O R₂ = Ac $\Delta^{2(3)}$ Ĥ R_2 CH₂OR₃ 8 R1 = OH R2 = R3 = H 9 R₁ = R₂ = OH R₃ = H 9a $R_1 = OAc R_2 = OH R_3 = Ac$

11 R = H 11a R = Ac 10a R = Ac

Hz). Thus, the alcohol must be situated at C-2 with an α -stereochemistry, a conclusion that was confirmed by the ¹³C NMR data (Table 1).

Another compound obtained in this feeding was 9. Its HRMS was in accordance with the molecular formula $C_{20}H_{34}O_4$, indicating that two new oxygen atoms had been introduced into 2 during the fermentation. The ¹H NMR spectrum showed two protons geminal to hydroxylic functions. One of these resonated at δ 4.08 as a triplet of triplets, in a manner similar to that observed in 7, which indicated that this hydroxyl must be situated at the 2α position. The hydrogen geminal to the second alcohol group

© 1998 American Chemical Society and American Society of Pharmacognosy Published on Web 08/05/1998 10.1021/np980133m CCC: \$15.00

^{*} To whom correspondence should be addressed. Tel.: 34-22251728. Fax: 34-22260135. E-mail: bmfraga@ipna.csic.es.

[‡] Instituto Universitario de Bio-Orgánica.

 Table 1.
 ¹³C NMR Data of Compounds 8, 9, 9a, 10a, 12, and 13a

carbon	8	9	9a	10a	12	13a
1	47.6	49.7	45.8	37.7	79.3	81.2
2	65.0	65.1	68.0	17.7	29.1	24.2
3	44.5	46.6	42.8	40.7	33.1 ^a	33.3
4	38.4	38.4	38.4	37.3^{a}	37.3	36.1
5	48.6	51.0	51.2	52.8	48.1	48.8
6	19.3	68.1	68.4	68.6	19.5	19.3
7	42.6	50.3	50.7	52.3	42.4	42.4
8	74.9	74.5	74.1	73.8	65.0	74.3
9	55.6	56.3	56.6	56.7	58.0	57.3
10	39.0	39.7	38.4	37.8 ^a	42.6	41.3
11	15.4	15.4	15.4	66.8	17.7	17.5
12	35.6	35.8	35.8	40.7	33.4^{a}	36.3
13	73.4	73.4	73.3	72.0	70.9	71.7
14	147.6	147.8	147.8	147.5	59.9	43.2
15	110.4	110.4	110.2	110.6	43.9	61.3
16	28.3	28.3	28.3	28.8^{b}	24.8^{b}	27.7
17	25.5	26.5	26.4	28.1^{b}	24.2^{b}	25.1
18	71.2	71.5	72.0	72.9	71.4	71.8
19	18.1	20.4	20.1	19.5	16.8	16.9
20	16.9	18.3	18.2	18.2	11.9	13.1

a,b These values may be interchanged.

appeared as a broad singlet at δ 4.48. This could be explained by the presence of this hydroxyl group at various positions such as C-1(α), C-3(α), C-6(β), or C-12(α). The C-6(β) position was indicated in light of the ¹³C NMR data (Table 1) and then confirmed by acetylation of this compound, leading to the 2 α ,18-diacetate (**9a**). The 6 β -hydroxyl is stereochemically hindered, which in this type of molecule only occurs at this position. Hence, the structure of this metabolite was resolved as 2 α ,6 β ,18-trihydroxymanoyl oxide (**9**).

The more polar metabolites 10 and 11 were obtained as their acetates by acetylation and chromatography of the fraction containing them. The structure of 6β , 11β , 18trihydroxymanoyl oxide (10) was assigned to the first alcohol. The molecular formula of its 11β , 18-diacetate (10a) was $C_{24}H_{38}O_6$, indicating that the parent triol 10 was $C_{20}H_{34}O_4$. Its ¹H NMR spectrum showed a proton geminal to a hydroxyl group at δ 4.37 as a broad singlet. The chemical shift and multiplicity of the resonance were similar to those observed for the 6α -H in compound **9a**, indicating the existence in **10a** of a 6β -alcohol that was not acetylated under usual conditions. A proton geminal to an acetoxy group, which was assigned to C-11(β), also appeared in this spectrum. It resonated as a double doublet at δ 5.54. Double resonance experiments permitted observation of the couplings of this carbinol with the hydrogens of the C-12 methylene (J = 4.5 Hz) and with that of the C-9 methine (J = 3.2 Hz). These ¹H NMR data were similar to those observed for 11β -acetoxymanoyl oxide.^{9,10} Finally, the structure of the diacetate (10a) was confirmed by assignment of its ¹³C NMR spectrum (Table 1).

The second metabolite, also obtained as the acetate, was 14ξ , 15, 18-triacetate (**11a**), which had a molecular formula of $C_{26}H_{42}O_8$, indicating that the compound obtained in the feeding was the tetraol **11**. Thus, the nonacetylated hydroxyl was assigned to the 6β position for the reason given previously for **9** and **10**. In the ¹H NMR spectrum, the disappearance of the double bond and the observation of three hydrogens situated on two adjacent carbon-bearing alcohols indicated that one of the alcohols was primary and the other secondary. These facts permitted us to assign the remaining two hydroxyls to C-14 and C-15, with the stereochemistry at C-14 remaining undetermined.

The incubation of jhanidiol (3) with M. plumbeus led to the isolation of 12-16. Compound 15 had been obtained

 Table 2.
 ¹³C NMR Data of Compounds 14a, 16, 16a, 17, 20, and 23

carbon	14a	16	16a	17	20	23
1	78.4	79.1	81.2	215.7	217.0	211.0
2	29.2	29.2	24.1	35.4	71.3	43.5
3	70.2	33.2 ^a	33.3	35.7	39.7	75.9
4	40.3	37.3	36.1	37.4	36.7	42.5
5	45.6	48.0	48.8	49.4 ^a	43.5	48.6
6	18.6	19.4	19.3	20.1	19.7	19.4
7	42.6	42.5	42.1	41.4	42.1	41.7
8	74.3	75.8	74.7	75.7	75.0	74.5
9	53.8	58.4	56.5	50.4 ^a	48.5	49.0
10	41.1	42.7	41.3	50.9	48.8	52.1
11	17.3	17.5	17.1	16.9	16.7	17.4
12	34.0	33.4^{a}	31.8	33.1	35.3	36.3
13	73.3	71.3	73.1	70.5	73.7	73.8
14	147.1	76.7	77.2	77.0	147.4	147.7
15	111.0	63.3	63.4	63.2	110.6	110.4
16	29.5	24.7^{b}	25.3^{a}	24.7^{b}	28.6	27.9
17	25.9	24.4^{b}	25.2^{a}	24.5^{b}	25.9	25.2
18	64.9	71.3	71.8	70.3	70.9	70.6
19	12.8	16.8	16.7	18.8	20.6	15.3
20	12.5	12.1	13.1	15.3	17.1	11.8

^{*a,b*} These values may be interchanged.

in the biotransformation of this same substance (3) by *G.* fujikuroi.² The least polar metabolite isolated from the feeding of **3** was the epoxide **12**, which was a single stereoisomer. The ¹H NMR spectrum of this metabolite showed no vinylic hydrogens but had those indicative of an epoxide at C-14,C-15. The two H-15 protons resonated as two double doublets at δ 2.68 (J = 5.1, 2.9 Hz) and 2.71 (J = 5.1, 3.9 Hz), while H-14 appeared as a double doublet at δ 2.87 (J = 3.9, 2.9 Hz). Consequently, the structure 1 β ,18-dihydroxy-14 ξ ,15-epoxymanoyl oxide (**12**) was assigned. Epoxidation of **3** with *m*-chloroperbenzoic acid led to a mixture of stereoisomers in a 6:4 ratio. The pure stereoisomer obtained in the biotransformation was identical with that formed, in a lesser proportion, in the chemical epoxidation.

The metabolite **13**, obtained in this feeding of **3**, was isolated together with **14** as their triacetates **13a** and **14a** by acetylation and chromatography of the fractions containing them. Structure **13a** was assigned by comparing its ¹H NMR spectrum with that of **3a**.⁸ The hydrogens of the double bond disappeared, being substituted by those of a $-CH_2-CH_2OAc$ group. The two protons of this 15-acetoxymethylene group resonated as a triplet at δ 4.19 (J = 7.3 Hz). This structure was confirmed by assignment of the ¹³C NMR spectrum (Table 1), thus, the parent triol must be 1 β ,15,18-trihydroxymanoyl oxide (**13**).

The molecular formula of triacetate **14a** ($C_{26}H_{40}O_7$), corresponding to an alcohol $C_{20}H_{34}O_4$, indicated that a new oxygen had been introduced. This must be a secondary alcohol, because a new hydrogen geminal to an acetoxy group appeared in the ¹H NMR spectrum of **14a**, resonating as a double doublet at δ 4.91 (J = 12.3, 4.8 Hz). These data are characteristic of a proton geminal to an β -equatorial acetate at C-3, C-7, or C-12. In light of the ¹³C NMR spectrum (Table 2), the acetoxy group was placed at C-3 β . Therefore, the structure of 1β , 3β ,18-trihydroxymanoyl oxide (**14**) was assigned to the corresponding triol.

The most polar metabolite (**16**) did not yield a molecular ion in its MS, but gave one at m/z 323.2240 ($C_{19}H_{31}O_4$) formed by loss of water and a methyl group. The two oxygen atoms introduced during the feeding must be situated at C-14 and C-15, because the hydrogen signals of the double bond disappeared in its ¹H NMR spectrum, being substituted by those of another three coupled protons, now on carbon-bearing oxygens. These signals were overlapped at δ 3.70 and were resolved in the corresponding spectrum of the triacetate **16a**, which showed the H-14 as a double doublet at δ 5.00 (J = 9.0, 2.5 Hz) and the two H-15 signals as another pair of double doublets at δ 4.09 (J = 11.9, 9.0 Hz) and 4.43 (J = 11.9, 2.5 Hz). Hence, the corresponding alcohol possessed the structure 1β , 14ξ , 15, -18-tetrahydroxymanoyl oxide (**16**). Assignments of the ¹³C NMR spectra of **16** and **16a** are given in Table 2.

Incubation of 1-oxo-18-hydroxymanoyl oxide (4) led to compounds 17-25. Metabolites 18, 19, 21, 22, and 24 had been previously obtained in the biotransformation of 4 with the fungus *G. fujikuroi*.² The least polar product was **20**, which had the molecular formula C₂₀H₃₂O₄. Its ¹H NMR spectrum showed the resonance of a hydrogen geminal to a new hydroxyl group, which was assigned to C-2 in light of the disappearance in this spectrum of the characteristic methylene group adjacent to the 1-oxo group and assignment of the ¹³C NMR data (Table 2). The stereochemistry assigned to this hydroxyl group was determined as follows. The most stable conformation of ring A, obtained using molecular mechanics calculations, was a boat, showing a difference of about 6 kcal/mol from that of a chair. Therefore, the observed coupling constants between H-2 and the two H-3, 14.1 and 6.1 Hz, indicated a β -equatorial stereochemistry for the hydroxyl group. On the other hand, the spectroscopic data of this product were similar to those of its 2α -epimer (19), obtained in this feeding and also in the incubation of 4 with G. fujikuroi.² Consequently, the structure of 1-oxo- 2β , 18-dihydroxymanoyl oxide (20) was given to this compound.

Another substance isolated was **23**, which was an isomer of **24**. Comparing the ¹H NMR spectrum of **23** with that of the substrate **4**, a new hydrogen geminal to a hydroxyl group appeared. This alcohol was assigned to C-3(α) on the basis of the following considerations: (a) the least energy conformation was determined as a boat by molecular mechanics calculations; and (b) the 3 β -proton resonated as a double doublet at δ 3.93 (J = 12, 5.2 Hz), indicating an axial stereochemistry. This hydrogen is coupled with the characteristic signals of H-2, which are deshielded by the adjacent 1-oxo group. The location of the hydroxyl group was confirmed by the formation of an α , β -unsaturated carbonyl group during treatment with Ac₂O-pyridine, which led to the dehydrated product **25**. Thus, the structure of 1-oxo-3 α ,18-dihydroxymanoyl oxide **(23)** was given to this substance. The assignment of its ¹³C NMR spectrum is given in Table 2.

Finally, the structure of 1-oxo-14,15,18-trihydroxymanoyl oxide (**17**) was assigned to the most polar metabolite on the basis of the following considerations. The peak at m/z 321.2062, observed in its MS, was formed from the molecular ion by loss of water and a methyl group. This compound gave a triacetate (**17a**), the ¹H NMR spectrum of which showed signals of a -CH(OAc)-CH₂OAc group. Thus, the two H-15 protons appeared as a pair of double doublets at δ 4.14 (J = 11.7, 9.0 Hz) and 4.46 (J = 11.7, 2.4 Hz), while the H-14 resonated as another double doublet at δ 4.99 (J = 9.0, 2.4 Hz). The corresponding alcohol **17** is formed in the incubation by epoxidation of the vinyl group to give **22** and opening of the oxirane ring by nucleophilic attack of water from the culture medium.

The results of the biotransformation of jhanol (2) indicated that there is a preference for hydroxylation at C-2(α) or C-6(β) and, to a lesser extent, at C-1(α) or C-11(α or β), while the presence of a 1 β -hydroxyl group in jhanidiol (3) inhibits the 6 β - or the 11-hydroxylation, the epoxidation of the vinyl group appearing as the main reaction. Moreover, the positions 2 α and 3 β were also hydroxylated. In the case of the 1-oxo-jhanol (4), there exists preference for 6 β -hydroxylation or epoxidation of the vinyl group. Other hydroxylations observed were at the 2 α , 2 β , 3 α , 3 β , or 11 β positions.

Experimental Section

General Experimental Procedures. Melting points were determined with a Reichert Thermovar apparatus and are uncorrected. IR and UV spectra were recorded in a Perkin–Elmer 1600 FT and a Varian Cary 1E spectrophotometer, respectively. ¹H NMR spectra were recorded in CDCl₃ solutions at 200.13 and 500.13 MHz, with a Bruker AC-200 or a Bruker AMX2–500 spectrometer, respectively, and the ¹³C NMR were run at 50.32 MHz, with a Bruker AC-200 and are reported in parts per million (δ). MS were taken at 70 eV (probe) in a Shimadzu Q2000; and HRMS, in a Micromass Autospec spectrometer. Conformations of minimum energy were determined by computational methods employing the *Chem X* program of Chemical Design. Dry column chromatographies were made on Si gel Merck 0.02–0.063 mm.

Organism. The fungal strain was *Mucor plumbeus* CMI 116688 and was a gift from Dr. J.R. Hanson, School of Chemistry and Molecular Sciences (University of Sussex).

Incubation Experiments. The fungus *M. plumbeus* was grown in shake culture at 25 °C, in conical flasks (250 mL), each containing 50 mL of a sterile medium comprising (per L) glucose (80 g), NH₄NO₃ (0.48 g), KH₂PO₄ (5 g), MgSO₄ (1 g), and trace-elements solution (2 mL). The trace-elements solution contained (per 100 mL) Co(NO₃)₂ (0.01 g), CuSO₄ (0.015 g), ZnSO₄ (0.16 g), MnSO₄ (0.01 g), and (NH₄)₆Mo₇O₂₄ (0.01 g). The substrate dissolved in EtOH was evenly distributed between flasks after 1 day of growth. After a further 6 days, the fermentation was harvested. The mycelium was filtered, and the culture filtrate was extracted with EtOAc. The extract was dried over Na₂SO₄, the solvent evaporated, and the residue chromatographed on a Si gel column using a petroleum ether–EtOAc gradient.

Incubation of Jhanol (2): The substrate (**2**, 300 mg) in 26 conical flasks was incubated as above. Chromatography of the extract on Si gel gave: 11β ,18-dihydroxymanoyl oxide (**5**) (5 mg); 11α ,18-dihydroxymanoyl oxide (**6**) (2 mg); 1α ,18-

dihydroxymanoyl oxide (7) (3 mg); 2α ,18-dihydroxymanoyl oxide (8) (60 mg); 2α ,6 β ,18-trihydroxymanoyl oxide (9) (32 mg); 6β ,11 β ,18-trihydroxymanoyl oxide (10) (2 mg); and 6β ,14 ξ ,-15,18-tetrahydroxymanoyl oxide (11) (10 mg). The two last compounds (10) and (11) were identified as the 11 β ,18-diacetate (10a) and the 14 ξ ,15,18-triacetate (11a), by acetylation and chromatography of the fractions containing them.

2 α ,**18**-**Dihydroxymanoyl oxide (8):** colorless crystals (petroleum ether–EtOAc); mp 158–160 °C; ¹H NMR (500 MHz) δ 0.79, 0,87, 1.28, 1.30 (each 3H, s), 3.15, 3.43 (each 1H, d, J = 10.9 Hz, H-18), 3.99 (1H, tt, J = 11.2, 4.5 Hz, H-2), 4.92 (1H; dd, J = 10.7, 1.0 Hz, H-15), 5.14 (1H, dd, J = 17.4, 1.0 Hz, H-15), 5.87 (1H, dd, J = 17.4, 10.7 Hz, H-14); EIMS m/z (rel int) 307 [M – CH₃]⁺ (63), 289 (17), 271 (18), 259 (13), 241 (16), 224 (7), 206 (20), 189 (25); HREIMS m/z 307.2273 [M – CH₃]⁺ (calcd for C₁₉H₃₁O₃, 307.2271).

2 α ,**6** β ,**18**-**Trihydroxymanoyl oxide (9):** ¹H NMR (500 MHz) δ 1.18, 1.21, 1.30, 1.57 (each 3H, s), 3.27, 3.54 (each 1H, d, J = 10.8 Hz, H-18), 4.08 (1H, tt, 11.2, 4.4 Hz, H-2), 4.48 (1H, br s, H-6), 4.91 (1H, dd, J = 10.7, 1.4 Hz, H-14), 5.11 (1H, dd, J = 17.4, 1.5 Hz, H-15), 5.85 (1H, dd, J = 17.4, 10.7 Hz, H-15); EIMS *m*/*z* (rel int) 338 [M]⁺ (0.5), 323 (100), 305 (24), 287 (19), 269 (27), 257 (18), 239 (9), 237 (14), 222(17), 207(13), 204(14), 199(13); HREIMS *m*/*z* 338.2453 [M]⁺ (calcd for C₂₀H₃₄O₄, 338.2457).

2 α ,**18**-Diacetate (9a): colorless crystal (petroleum ether-EtOAc), mp 158–160 °C; ¹H NMR (200 MHz) δ 1.14 (1H, d, J= 2.7 Hz, H-5), 1.28, 1.29, 1.31 1.58 (each 3H, s), 1.67 (1H, dd, J = 13.6, 4.6 Hz, H-7), 2.01 (1H, dd, J = 13.6, 2.7 Hz, H-7), 2.03, 2.08 (each 3H, s), 3.78, 4.03 (each 1H, d, J = 11.1 Hz, H-18), 4.36 (1H, br s, H-6), 4.93 (1H, dd, J = 10.7, 1.5 Hz, H-15), 5.12 (1H, dd, J = 17.4, 1.5 Hz, H-15), 5.21 (1H, m, H-2), 5.87 (1H, dd, J = 17.4, 10.7 Hz, H-14); EIMS m/z (rel int) 422 [M]⁺ (1), 407 (97), 389 (8), 347 (14), 329 (15), 287 (33), 269 (54), 264 (13), 251 (19), 239 (6), 217 (10), 204 (13), 199 (41); HREIMS m/z 422.26677 [M]⁺ (calcd for C₂₄H₃₈O₆, 422.2668).

6 β ,**11** β ,**18**-**Trihydroxymanoyl oxide (10)**: obtained as its 11 β ,18-diacetate (**10a**) by acetylation at room temperature and chromatography of the fraction containing it.

11 β ,**18**-Diacetate (10a): ¹H NMR (500 MHz) δ 1.23, 1.40, 1.43, 1.89 (each 3H, s), 1.52 (1H, d, J = 3.2 Hz, H-9), 1.94 (2 H, d, J = 4.5 Hz, H-12), 2.07, 2.10 (each 3H, s), 3.71, 4.00 (each 1H, d, J = 11.1 Hz, H-18), 4.37 (1H, br s, H-6), 4.94 (1H, d, J = 10.7 Hz, H-15), 5.13 (1H, d, J = 17.3 Hz, H-15), 5.54 (1H, dd, J = 4.5, 3.2 Hz, H-11), 5.85 (1H, dd, J = 17.4, 10.7 Hz, H-14). EIMS *m*/*z* (rel int) 422 [M]⁺ (1), 407 (4), 389 (5), 347 (53), 329 (19), 302 (6), 287 (16), 275 (5), 269 (19), 251 (7), 231 (11), 217 (7), 199 (13); HREIMS *m*/*z* [M]⁺ 422.2655 (calcd for C₂₄H₃₈O₆, 422.2668).

6 β ,**14** ξ ,**15**,**18**-**Tetrahydroxymanoyl oxide (11)**: obtained in the form of the triacetate **11a** by acetylation at room temperature and chromatographic separation.

14 ξ **,15,18-Triacetate (I1a):** ¹H NMR (200 MHz) δ 1.13, 1.19, 1.26, 1.54 (each 3H, s), 2.03, 2.09, 2.10 (each 3H, s), 3.73, 4.00 (each 1H, d, J = 11.1 Hz, H-18), 4.12 (1H, dd, J = 11.7, 9.2 Hz, H-15), 4.31 (1H, br s, H-6), 4.43 (1H, dd, J = 11.7, 2.5 Hz, H-15), 5.00 (1H, dd, J = 9.2, 2.5 Hz, H-14); EIMS m/z (rel int) 482 [M]⁺ (0.5), 467 (1), 449 (1), 422 (2), 407 (3), 389 (1), 379 (6), 337 (14), 319 (9), 275 (5), 259 (74), 241 (26), 201 (30); HREIMS m/z [M]⁺ 482.2871 (calcd for C₂₆H₄₂O₈, 482.2879).

Incubation of Jhanidiol (3). The substrate (230 mg) in 28 conical flasks was incubated as described above. The extract was chromatographed on Si gel affording: starting material (90 mg); 1β ,18-dihydroxy- 14ξ ,15-epoxymanoyl oxide (12) (9 mg); 1β ,15,18-trihydroxymanoyl oxide (13); 1β ,3 β ,18-trihydroxymanoyl oxide (14); 1β ,2 α ,18-trihydroxymanoyl oxide (15) (3 mg); and 1β ,14 ξ ,15,18-tetrahydroxymanoyl oxide (16) (8 mg). Compounds 13 and 14 were identified as their triacetates 13a (2 mg) and 14a (2 mg), respectively.

1 β ,**18**-Dihydroxy-14 ξ ,**15**-epoxymanoyl oxide (epoxyjhanidiol) (12): ¹H NMR (200 MHz) δ 0.74, 0.89, 1.23, 1.32 (each 3H, s), 2.68 (1H, dd, J = 5.1, 2.9 Hz, H-15), 2.71 (1H, dd, J = 5.1, 3.9 Hz, H-15), 2.87 (1H, dd, J = 3.9, 2.9 Hz, H-14), 3.12, 3.43 (each 1H, d, J = 11.0 Hz, H-18), 3.45 (1H, m, H-1); EIMS m/z (rel int) 338 [M]⁺ (1), 323 (14), 307 (3), 305 (4), 295 (47), 277 (24), 259 (59), 247 (100), 241 (14), 229 (28), 219 (7), 199 (6); HREIMS $\mbox{$m/z$}\ [M]^+$ 338.2473 (calcd for $C_{20}H_{34}O_4,$ 338.2457).

1 β ,**15**,**18**-**Trihydroxymanoyl oxide (13):** obtained in the form of its triacetate **16** by acetylation in the usual way and chromatography of the fractions containing it.

Triacetate 13a: ¹H NMR (200 MHz) δ 0.83, 0.99, 1.22, 1.27 (each 3H, s), 2.02, 2.04, 2.10 (each 3H, s), 3.65, 3.84 (each 1H, d, J = 11.0 Hz, H-18), 4.19 (1H, t, J = 7.3 Hz, H-15), 4.62 (1H, dd, J = 6.6, 4.4 Hz, H-1), EIMS m/z (rel int) 451 [M - CH₃]⁺ (7), 391 (15), 379 (44), 331 (19), 319 (22), 301 (44), 259 (100), 253 (15), 241 (75), 201 (54), 199 (9); HREIMS m/z [M - CH₃]⁺ 451.2697 (calcd for C₂₅H₃₉O₇, 451.2695).

1 β ,**3** β ,**18-Trihydroxymanoyl oxide (14):** isolated as its triacetate **14a** by acetylation and chromatographic separation.

Triacetate 14a: ¹H NMR (200 MHz) δ 0.84, 1.03, 1.23, 1.30 (each 3H, s), 2.01 (6 H, s), 2.09 (3H, s), 3.74 (2 H, s, H-18), 4.70 (1H, dd, J = 11.4, 4.8 Hz, H-1), 4.91 (1H, dd, J = 12.3, 4.8 Hz, H-3), 4.97 (each 1H, dd, J = 10.7, 1.5 Hz, H-15), 5.15 (1H, dd, J = 17.2, 1.5 Hz, H-15), 5.87 (1H, dd, J = 17.2, 10.7 Hz, H-14); EIMS m/z (rel int) 464 [M]⁺ (1), 449 (100), 389 (21), 329 (55), 275 (10), 269 (59), 215 (6), 213 (10), 199 (40), HREIMS m/z [M]⁺ 464.2753 (calcd for C₂₆H₄₀O₇, 464.2774).

1 β ,**1**4 ξ ,**15**,**18**-**Tetrahydroxymanoyl oxide (16)**: ¹H NMR (200 MHz) δ 0.73, 1.19, 1.26, 1.32 (each 3H, s), 3.11, 3.42 (each 1H, d, J = 10.8 Hz, H-18), 3.45 (1H, overlapped with H-18, H-1), 3.70 (3H, m, H-14, H-15); EIMS *m*/*z* (rel int) 323 [M - CH₃ - H₂O]⁺ (5), 307 (4), 295 (25), 277 (24), 259 (52), 247 (100), 241 (15), 229 (28), 201 (20), 189 (26); HREIMS *m*/*z* [M - CH₃ - H₂O]⁺ 323.2240 (calcd for C₁₉H₃₁O₄, 323.2222).

Tetraacetate 16a: ¹H NMR (200 MHz) δ 0.83, 0.98, 1.23, 1.27 (each 3H, s), 2.02, 2.03 (each 3H, s), 2.11 (6 H, s), 3.65, 3.85 (each 1H, d, J = 11.1 Hz, H-18), 4.09 (1H, dd, J = 11.9, 9.0 Hz, H-15), 4.43 (1H, dd, J = 11.9, 2.5 Hz, H-15), 4.61 (1H, br s, H-1), 5.00 (1H, dd, J = 9.0, 2.5 Hz, H-14); EIMS m/z (rel int) 464 [M - AcOH]⁺ (1), 449 (1), 407 (1), 404 (3), 389 (3), 379 (18), 319 (15), 301 (12), 277 (6), 259 (100), 241 (39), 229 (11), 201 (39); HREIMS m/z [M - AcOH]⁺ 464.2758 (calcd for C₂₆H₄₀O₇, 464.2774).

Epoxidation of Jhanidiol (3). Compound **3** (30 mg) in CHCl₃ (5 mL) was treated with *m*-chloroperbenzoic acid (20 mg) for 24 h at room temperature. Usual workup afforded a mixture of the diastereomeric 14,15-epoxides (4:6), which were inseparable by chromatography.

Incubation of 1-Oxo-18-hydroxymanoyl Oxide (4). The substrate **4** (200 mg) in 21 conical flasks was incubated as above. Chromatography of the extract gave starting material (80 mg); 1-oxo-11 β ,18-dihydroxymanoyl oxide (**18**) (4 mg); 1-oxo-2 α ,18-dihydroxymanoyl oxide (**19**) (2 mg); 1-oxo-2 β ,18-dihydroxymanoyl oxide (**20**) (1 mg); 1-oxo-6 β ,18-dihydroxymanoyl oxide (**21**) (11 mg); 1-oxo-14 ξ ,15-epoxy-18-hydroxymanoyl oxide (**22**) (2 mg); 1-oxo-3 β ,18-dihydroxymanoyl oxide (**24**) (2 mg); 1-oxo-3 α ,18-dihydroxymanoyl oxide (**23**) (2 mg), and 1-oxo-14,15,18-trihydroxymanoyl oxide (**17**) (7 mg).

1-Oxo-2β,18-dihydroxymanoyl oxide (20): colorless crystal (petroleum ether–EtOAc), mp 106–107 °C; IR (CHCl₃) ν_{max} 3460, 1700 cm⁻¹; ¹H NMR (200 MHz) δ 0.88, 1.16, 1.29, 1.38 (each 3H, s), 1.49 (1H, dd, J = 14.1, 13.8 Hz, H-3), 2.29 (1H, dd, J = 13.8, 6.1 Hz, H-3), 3.38, 3.63 (each 1H, d, J = 10.5 Hz, H-18), 4.68 (1H, dd, J = 14.1, 6.1 Hz, H-2), 4.92 (1H, dd, J = 10.7, 1.5 Hz, H-15), 5.13 (1H, dd, J = 17.2, 1.5 Hz, H-15), 5.84 (1H, dd, J = 17.2, 10.7 Hz, H-14); EIMS m/z (rel int) 336 [M]⁺ (4), 321 (100), 303 (61), 291 (6), 285 (12), 273 (7), 266 (5), 255 (9), 238 (19), 223 (15), 207 (12), 203 (8), 197 (5); HREIMS m/z [M]⁺ 336.2305 (calcd for C₂₀H₃₂O₄, 336.2300).

1-Oxo-3α,18-dihydroxymanoyl oxide (23): colorless crystal (petroleum ether–EtOAc), mp 152–154 °C; ¹H NMR (200 MHz) δ 1.07, 1.23, 1.31, 1.35 (each 3H, s), 2.43 (1H, dd, J = 12.0 5.2 Hz, H-2), 3.09 (1H, t, J = 12.0 Hz, H-2), 3.43, 3.74 (each 1H, d, J = 10.2 Hz, H-18), 3.93 (1H, dd, J = 12, 5.2 Hz, H-3), 4.93 (1H, dd, J = 10.7, 1.4 Hz, H-15), 5.14 (1H, dd, J = 17.3, 1.4 Hz, H-15), 5.88 (1H, dd, J = 17.3, 10.7 Hz, H-14); EIMS m/z (rel int) 336 [M]⁺ (1), 321 (100), 309 (3), 303 (18), 285 (20), 279 (9), 273 (7), 267 (6), 255 (15), 238 (12), 233 (6),

215 (8), 203 (11), 199 (2); HREIMS [M]+ m/z 336.2305 (calcd for C₂₀H₃₂O₄, 336.2300).

Compound 25. Treatment of **23** with $Ac_2O-C_5H_5N$ (2:1) at room temperature for 12 h and chromatography over Si gel afforded the dehydrated compound **25**: UV (CHCl₃) λ_{max} 242 nm; ¹H NMR (200 MHz) δ 1.09, 1.18, 1.34, 1.39 (each 3H, s), 2.04 (3H, s), 3.86, 3.99 (each 1H, d, J = 11.2 Hz, H-18), 4.94 (1H, dd, J = 10.6, 1.4 Hz, H-15), 5.16 (1H, dd, J = 17.2, 1.4 Hz, H-15), 5.83, 6.33 (each 1H, d, J = 10.2 Hz, H-2 and H-3, respectively), 5.90 (1H, dd, J = 17.2, 10.6 Hz, H-14); EIMS m/\bar{z} (rel int) 360 [M]⁺ (1), 345 (100), 333 (5), 327 (4), 290 (3), 275 (8), 267 (19), 262 (15), 215 (6), 211 (10), 199 (2); HREIMS m/z [M]⁺ 360.2297 (calcd for C₂₂H₃₂O₄, 360.2300).

1-Oxo-14,15,18-trihydroxymanoyl oxide (17): colorless crystal (petroleum ether-EtOĂc), mp 159-161 °C; IR (CHCl₃) v_{max} 3430, 1700 cm⁻¹; ¹H NMR (500 MHz) δ 0.97, 1.19, 1.27, 1.35 (each 3H, s), 1.99 (1H, ddd, J = 13.8, 10.5, 5.3 Hz, H-3), 2.31 (1H, ddd, J = 14.0, 6.7, 5.3 Hz, H-2), 2.81 (1H, ddd, J = 14.0, 10.5, 5.5 Hz, H-2), 3.23, 3.46 (each 1H, d, J = 10.7 Hz, H-18), 3.66 (2 H, signals overlapped, H-14 and H-15), 3.80 (1H, dd, J = 11.3, 5.1 Hz, H-15); EIMS m/z (rel int) 321 [M - CH₃ $-H_2O]^+$ (2), 305 (3), 293 (79), 275 (20), 257 (38), 245 (85), 227 (9), 217 (8), 201 (17), 199 (23); $m/z \,[M - CH_3 - H_2O]^+ 321.2062$ (calcd for C19H29O4, 321.2065).

Triacetate (17a): ¹H NMR (200 MHz) δ 1.03, 1.18, 1.25, 1.30 (each 3H, s), 3.73, 3.87 (1H, d, J = 11.1 Hz, H-18), 4.14 (1H, dd, J = 11.7, 9.0 Hz, H-15), 4.46 (1H, dd, J = 11.7, 2.4 Hz, H-15), 4.99 (1H, dd, J = 9.0, 2.4 Hz, H-14); EIMS m/z (rel int) 465 [M - CH₃]⁺ (1), 405 (1), 387 (2), 360 (1), 345 (3), 335 (100), 317 (7), 257 (92), 239 (17), 199 (52); HREIMS m/z [M -CH₃]⁺ 465.2482 (calcd for C₂₅H₃₇O₈, 465.2488).

Acknowledgment. This work has been supported by the DGES, Ministry of Education and Culture, Spain.

References and Notes

- (1) Bhat, S. V.; Bajwa, B. S.; Dornauer, H.; De Souza, N. J.; Fehlhaber, H. W. Tetrahedron Lett. **1977**, *16*, 1913–1917. (2) Fraga, B. M.; González, P.; Guillermo, R.; Hernández, M. G. Tetra-
- hedron 1998, 54, 6159-6168.
- (3) Fraga, B. M.; Guillermo, R.; Hanson, J. R.; Truneh, A. Phytochemistry **1996**. 42. 1583-1586.
- (4) Guillermo, R.; Hanson, J. R.; Truneh, A. J. Chem. Res. 1997, 28-29. (5) Aranda, G.; Hammoumi, A.; Azerad, R.; Lallemand, J. Y. Tetrahedron
- Lett. 1991, 32, 1783-1786. (6) Aranda, G.; El Kortbi, M. S.; Lallemand, J. Y.; Neuman, A.; Ham-
- moumi, A.; Facon, I.; Azerad, R. Tetrahedron 1991, 47, 8339-8350. (7) Hoffmann, J.; Fraga, B. M. Phytochemistry 1993, 33, 827-830.
- (8) González, A. G.; Arteaga, J. M.; Bretón, J. L.; Fraga, B. M. Phy-tochemistry 1977, 16, 107–110.
- (9) De Pascual-Teresa, J.; San Feliciano, A.; Del Corral, M. J. Anal. Quim. 1975, 71, 110–111.
- Topcu, G.; Tan, N.; Ulubelen, A.; Sun, D.; Watson, W. H. *Phytochem-istry* **1995**, *40*, 501–504. (10)

NP980133M